首页 >>  正文

衍射光栅实验报告总结

来源:baiyundou.net   日期:2024-08-24

  介绍

  在过去的几年里,在世界各地的实验室、医院和大学工作的生物医学研究人员和工程师开发了一套广泛的基于光谱的方法,包括利用近红外光谱 (NIRS) 的新型非侵入性体内技术 ) — 促进疾病和损伤的快速、准确检测和诊断。

  最近,隶属于伦敦大学学院医学物理和生物工程系以及伦敦大学学院妇女健康研究所和伦敦大学学院医院信托基金会新生儿科的英国研究小组设计并测试了 NIRS 系统,以帮助诊断新生儿脑损伤。

  伦敦研究人员建立的新型床边系统通过估计血红蛋白浓度的变化来同时测量大脑组织氧合和血流动力学的变化。该便携式系统还通过测量细胞色素 c 氧化酶 (CCO) 的氧化态来跟踪氧气利用率,细胞色素 c 氧化酶 (CCO) 负责体内 95% 以上的氧代谢。

  伦敦团队基于透镜的宽带 NIRS 系统(称为CYRIL(“细胞色素研究仪器和应用程序”的缩写))的使用在新生儿重症监护病房 (NICU) 的六名患有新生儿脑病的新生儿中进行了持续研究测量周期长达五天;获得父母同意后立即开始 NIRS 测量。

  CYRIL设置

  CYRIL 系统(见图 1)采用两个离散通道,每个通道均采用带有四个探测器的单个光源。每个通道均使用具有热稳定宽带白光源的光纤照明器,非球面透镜准直灯的高强度 NIR 输出,将其聚焦到光纤输入上。快门和光圈控制进入光纤的光量。在准直区域使用长通 (610 nm) 和短通 (950 nm) 滤光片可将光谱缩小到检测到的波长。

  *伦敦大学学院医院信托基金 (UCLH) 的婴儿大脑研究获得了西北研究伦理中心的伦理批准(REC 参考号:13/LO/0106)。在 UCLH 出生或转入 UCLH 治疗急性脑损伤的足月婴儿有资格接受调查;仅考虑没有先天畸形并被认为有可能存活的婴儿。

  图 1:(a) 带有实验设置的仪器图。(b) 带有光极支架的探测器光极。(c) 用于垂直输入摄谱仪的探测器光纤套圈。(d) 光极支架设计,具有光纤直径尺寸(所有探测器光纤具有相同的直径)和源探测器距离。(e) NICU 中 CYRIL 系统的图像。(f) CYRIL 光极在对象上的图像。图片由伦敦大学学院 Ilias Tachtsidis 博士提供。改编自首次发表于 Biomedical Optic Express 5(10), 3450–3466 (2014) 的材料。

  光纤和光极支架将光源连接到组织,并将组织连接到光谱仪。每个 3 米长的光纤束由多根直径为 30 μm 的高数值孔径光纤 (NA = 0.57) 组成。在组织处,源纤维束分支成一对纤维头(束直径 = 2.8 mm)。同时,探测器由八个单独的光纤束(直径 = 1 毫米)组成。探测器光纤可以任意组合排列,从而实现多距离测量、空间分辨光谱 (SRS) 和/或图像采集。光纤垂直排列在插芯中,将光输入光谱仪,从而可以在二维 CCD 上单独或同时检测每根光纤的光谱。

  由于基于透镜的光谱仪的光通量优于基于镜面的光谱仪 ( >99% ),因此 CYRIL 系统采用Teledyne Princeton Instruments 的Acton 系列 LS-785 基于透镜的光谱仪(见图 2)。CYRIL 的检测器光纤从组织表面收集光后,将其输入 LS-785 中的光纤适配入口,并通过可变狭缝以防止过度曝光。本研究中最佳狭缝开口确定为 20 μm。为了减少损耗,光线经过准直,然后引导至衍射光栅(闪耀波长为 1000 nm;每毫米 830 个凹槽),产生0.7 nm的波长分辨率和136 nm的带宽。由于衍射光栅安装在 LS-785 内的旋转平台上,因此 CYRIL 用户可以轻松选择要解析的波长范围(本研究中为 770 – 906 nm)。最后,光线通过 f/2 聚焦透镜聚焦到 CCD 上。将光聚焦在 y 方向可减少检测器通道之间的串扰。

  图 2:Acton 系列 LS-785 摄谱仪的剖视图。图表由伦敦大学学院 Ilias Tachtsidis 博士提供。首次发表于《生物医学光学快报》5(10), 3450–3466 (2014)。

  CCD 是 CYRIL 系统的 Teledyne Princeton Instruments PIXIS:512F 相机所使用的科学级传感器,具有峰值量子效率位于NIR 区域的光敏阵列。这个 512 x 512 像素的二维阵列尺寸为 12.3 x 12.3 毫米,每个像素尺寸为 24 x 24 微米。来自 CYRIL 全部八根检测器光纤的光可以在传感器上同时检测,其前照式架构非常适合与近红外光谱相关的低至中等光子信号水平。为了减少暗噪声,在相机运行期间将 CCD 热电冷却至–70°C (热稳定至 ± 0.05°C);该温度下的暗电流为0.002 电子/像素/秒。当相机以 1000 kHz 运行时,读取噪声为5 个电子 RMS。研究人员使用 Teledyne Princeton Instruments LightField® 采集软件(与IntelliCal® 校准包配合)将 x 方向上的每个像素校准到其相应的波长箱。校准后,CCD分辨率为0.27 nm。因此,CYRIL 的波长分辨率为 0.27 ± 0.70 nm。

  数据采集与分析

  下面介绍了记录的强度光谱的示例(图 3a)以及它们之间相应的衰减变化(图 3b)。组织中血红蛋白发色团浓度水平的变化通过强度谱形状的变化反映出来。在全身氧饱和度 (SpO2) 期间,由于 Δ[oxCCO](即代谢酶细胞色素 c 氧化酶的氧化态)和 Δ[ 的减少,光谱峰值从~780 nm 移动到 ~785 nm生色团 HbO2],以及 Δ[生色团 HHb] 的增加。

  图 3:记录了 6 名受试者的 NIRS 信号。总采集时间:212 小时 25 分钟。(a) 对象 003 的去饱和前 (SpO 2 = 100%) 和去饱和最低点 (SpO 2 = 77%)的强度谱示例,左侧通道,距离最长的源-探测器距离。观察到光谱峰值的移动。(b) (a)所示强度之间的衰减变化;该衰减变化与 Δ[HbO 2 ] = ~ –6 μM、Δ[HHb] = ~3 μM 和 Δ[oxCCO] = ~ –1.5 μM相关。数据由伦敦大学学院 Ilias Tachtsidis 博士提供。首次发表于《生物医学光学快报》5(10), 3450–3466 (2014)。

  National Instruments 的 LabVIEW ® 2011 软件用于创建自定义程序,允许 CYRIL 用户控制 PIXIS:512F、收集原始数据并计算相应的浓度。特殊的 LabVIEW 程序可在床边提供每个通道检测到的强度光谱和发色团浓度变化的实时视图。其波长分级功能使 CYRIL 系统用户能够获取并显示 CCD 512 x 512 阵列的强度加权图像,并为要分级的每个水平条带选择感兴趣区域(ROI)。每个条带对应于输入到LS-785 光谱仪的检测器光纤之一。所有条带都可以调整,以最大化每个通道的强度光谱而不饱和,并最小化通道之间的串扰。伦敦研究人员报告说,该研究的设置中没有显着的串扰。

  R Cubed Software 科学成像工具套件中的 LabVIEW 驱动程序使 PIXIS:512F 能够独立于 ROI 采集数据,并根据用户定义的设置按波长对数据进行分类。研究中记录的光强度峰值超过60000 次/秒。对于距离源 1 厘米的探测器,典型的光子计数为 >50000;对于距离源 1.5 厘米的探测器,>35000;对于距离源 2.0 厘米的探测器,>30000;对于距离源 2.5 厘米的探测器,>24000。暗计数降低了 2 个数量级(约 400 个计数)。使用Mathworks 的 MATLAB®软件进行数据分析,并使用自动小波去噪功能对 NIRS 数据进行处理,能够减少高频噪声,同时保持趋势信息。

  结果总结

  研究人员利用 CYRIL 通过估计血红蛋白浓度的变化来同时测量脑组织氧合和血流动力学的变化,并通过测量CCO 的氧化态来跟踪代谢和氧利用。定量近红外光谱数据与系统数据同时获取,允许进行多模式数据分析,研究人员研究了响应全局病理生理事件的 NIRS 变量(NIRS 分析侧重于自发性氧饱和度降低)。研究表明血红蛋白氧合变化与CCO氧化变化之间的关系在去饱和事件期间,与磁共振波谱仪测量的损伤严重程度的生物标志物显着相关。

  支持技术

  Teledyne Princeton Instruments的 CYRIL Acton 系列 LS-785是一款基于透镜的光谱仪(参见图 4),它提供当今市场上任何市售近红外拉曼光谱仪中最高的吞吐量。LS-785 的性能优势包括轻松调节750 – 830 nm 激光激发的波长、定制设计的抗反射涂层、独特的f/2 透镜(其专有涂层提供 >99% 的吞吐量)、与光纤探头和显微镜的简单接口,以及5 cm. -1分辨率。

  图 4:Acton 系列 LS-785 基于镜头的光谱仪,配有 PIXIS 科学 CCD 相机。

  CYRIL 还采用 Teledyne Princeton Instruments PIXIS:512F 科学 CCD相机。这款低噪声相机专为在定量紫外到近红外成像和光谱应用中实现最佳性能而设计,采用 Teledyne Princeton Instruments 独有的 XP 冷却技术来最大限度地减少热产生的暗电流(从而保持高信噪比)即使在连续运行多个小时的情况下)。凭借这项经过现场验证的创新技术,PIXIS 成为唯一一款采用全金属密封设计提供深度冷却的科学相机平台,并提供终身真空保证。为了使用笔记本电脑方便地进行控制和图像/光谱采集,PIXIS:512F 配备了 USB 2.0 数据接口。

  LS-785 基于镜头的光谱仪和 PIXIS:512F 科学 CCD 相机均与 Teledyne Princeton Instruments 的 64 位LightField 成像和光谱软件完全兼容(见图 5)。LightField 作为一个全功能的“命令中心”,使用户能够完全控制光谱仪和相机的操作参数、光谱采集、数据处理等。LightField 具有众多优势,例如强大的新型数学引擎,允许将数据直接采集到 National Instruments 的 LabVIEW 和 MathWorks 的 MATLAB 软件包中。

  图 5:LightField 科学成像和光谱软件。

  此外,LightField 支持 Teledyne Princeton Instruments 独有的IntelliCal 波长和强度校准包(见图 6)。IntelliCal 是 CYRIL 的创建者利用的另一项取得良好效果的功能,可将波长精度和独立于仪器的强度校准提高高达 10 倍。

  图 6:IntelliCal 强度和波长校准系统。

  未来发展方向

  通过提供独特且实时的患者体内数据, CYRIL 等新型床边光谱测量系统不仅有可能帮助疾病和损伤诊断,而且有可能帮助指导治疗。未来几年,商用高精度光谱仪和科学相机(例如 Teledyne Princeton Instruments 的产品)将继续为生物医学研究人员和工程师提供广泛的易于集成的特性和功能,以满足不断变化的灵敏度、速度和分辨率这些新颖系统的要求。

","gnid":"9fa016ba0bfe2be04","img_data":[{"flag":2,"img":[{"desc":"","height":"427","title":"","url":"https://p0.ssl.img.360kuai.com/t01d0a50165417fc8b1.jpg","width":"640"},{"desc":"","height":"523","title":"","url":"https://p0.ssl.img.360kuai.com/t017c0686802a545b5c.jpg","width":"640"},{"desc":"","height":"545","title":"","url":"https://p0.ssl.img.360kuai.com/t012026bcbd526b132a.jpg","width":"640"},{"desc":"","height":"222","title":"","url":"https://p0.ssl.img.360kuai.com/t01f08f06872dc2870a.jpg","width":"640"},{"desc":"","height":"446","title":"","url":"https://p0.ssl.img.360kuai.com/t01208697baa4b7b5d5.jpg","width":"600"},{"desc":"","height":"373","title":"","url":"https://p0.ssl.img.360kuai.com/t01ae88007a9dab02f7.jpg","width":"640"},{"desc":"","height":"477","title":"","url":"https://p0.ssl.img.360kuai.com/t0192715600568460c3.jpg","width":"640"}]}],"original":0,"pat":"art_src_0,fts0,sts0","powerby":"pika","pub_time":1694473200000,"pure":"","rawurl":"http://zm.news.so.com/adaff61fcc45ff9b3b7b98360806d311","redirect":0,"rptid":"d964f0aa80ee92bc","rss_ext":[],"s":"t","src":"东方闪光","tag":[{"clk":"kscience_1:新生儿","k":"新生儿","u":""}],"title":"近红外光谱有助于新生儿脑损伤的诊断

牛璐星1758光栅衍射实验的误差有什么,是大学实验的“光栅特性的研究”.这个实验的误差分析一下! -
严杨法19130368732 ______[答案] 有系统误差,比如各光栅缺口不是严格相等的 有偶然误差,比如人眼读数时,因个人生理差别而得到的暗明带宽度各有差异 另,偶然误差可以用逐差法消除,但是系统误差是去不掉的

牛璐星1758大学物理 光的衍射 求指导 -
严杨法19130368732 ______ (1)单缝衍射一级明纹位置: x=3λf/2a ∴ Δx=3fΔλ/2a=3*50*(7600-4000)/2*10^-2=2.7*10^7A=2.7mm(2)光栅第一主极大位置: x=λf/d ∴ Δx=fΔλ/d=50*(7600-4000)/10^-3=1.8*10^8A=1.8cm

牛璐星1758衍射光栅实验做光栅衍射的实验,用分光计做的.分析讨论题有一道是:如果光栅平面和分光计转轴平行,但光栅上刻线与转轴不平行,那么整个光谱会有何变... -
严杨法19130368732 ______[答案] 左右光谱会不一样高对测量的影响是关于角度的二阶小量,但也是有影响的,会使波长测量值变小

牛璐星1758用透射光栅测定光波波长实验误差分析怎么写 -
严杨法19130368732 ______[答案] d*sinθ=kλ, λ=d*sinθ/k, Δλ=d*cosθΔθ/k

牛璐星1758光栅衍射实验的误差有什么,分析一下! -
严杨法19130368732 ______ 光栅衍射实验的误差来源: (1)如果光栅放置得不严格垂直于人射光,而实验测量时仍用公式(1) 进行波长、分辨率等物理量的计算,将造成实验误差. (2)由于人射角θ不等于零而产生两项误差,比如人眼读数时,因个人生理差别而得到...

牛璐星1758大学物理光栅分辨本领研究的实验报告光栅分辨本领与什么因素有关?如何得到透光缝数? -
严杨法19130368732 ______[答案] 光栅分辨本领A=mn.其中m是衍射级次,n是光栅缝数 光栅缝数可以由光栅常数d乘以光栅长度得到

牛璐星1758求单缝衍射实验报告得数据(坐标和光强) -
严杨法19130368732 ______ 5.4 425.2 605 1854.8 2884.6 3544.4 2954.2 1264 1263.8 4503.6 9643.4 14743.2 18003 19282.8 19482.6 18792.4 1656 左边坐标,右边光强. 只有一半的另一半是对称的.

牛璐星1758有关光栅衍射的计算在写物理试验报告,上大学还没教就开始做这个试验.范例上有一个公式计算没看懂,望指教.在求u(λ)平均值的时候有个2π/360 其中360是... -
严杨法19130368732 ______[答案] 2π/360 这个值是1度对应的弧度值

牛璐星1758光栅衍射法测光波波长实验中果光谱线不等高,对实验结果有何影响?
严杨法19130368732 ______ 衍射实验对光线的光谱没有要求,只是看实验现象,现象明显就可以

牛璐星1758请问光栅常数是什么呢?
严杨法19130368732 ______ 光栅常数一般是460-720nm绿光.光栅常数是光栅的性质,由光栅本身决定的,与使用的光波长无关,只是用绿光去测光栅常数而已,用其他光测的结果是一样的,要看光...

(编辑:自媒体)
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图 @ 白云都 2024