首页 >>  正文

交错级数收敛于几怎么算

来源:baiyundou.net   日期:2024-09-01

萧箫 发自 凹非寺

量子位 | 公众号 QbitAI

陶哲轩又发新论文了!

这也是时隔一年,他再次独立发表新论文。(arXiv显示上一篇独作论文发表时间是在去年2月)

这篇新论文依旧与陶哲轩钻研的数论领域有关。

它证明了著名数学家埃尔德什·帕尔(Erdős Pál)提出的一个交错素数级数猜想,在哈代-李特尔伍德素数k元组猜想成立的条件下,是成立的。

(当然,哈代-李特尔伍德素数k元组猜想也是一个悬而未解的猜想,因此这项研究只是部分证明,并没有完全解决)

这项研究,还用到了他在几年前与合作者共同提出的一个素数随机模型。

一起来看看。

证明了什么样的猜想?

核心来说,这篇新论文要证明的,是埃尔德什提出的一个关于交错素数级数收敛性的猜想。

这个猜想与一个长这样的交错级数有关,其中pn是第n个素数:

交错级数,指的是项的符号是正负交替、而数值绝对值单调递减的无限级数。它的一般形式,大伙儿在学高数时应该都见过:

交错级数并不一定收敛,因此需要具体级数具体判断,这次陶哲轩证明的就是交错级数中的一个特殊类型,即an是素数pn的倒数,这个级数是收敛的。

不过,还有个前提条件——在哈代-李特尔伍德素数k元组猜想成立的条件下。

哈代-李特尔伍德素数k元组猜想,由英国科学家哈代和李特尔伍德提出,它预测了给定差值集合的k个素数出现的频率。

猜想认为,存在两个绝对常数ε>0和C>0,对于所有x≥10、所有k≤(log log x)^5、和所有由不同整数h1,…,hk组成的k元组:

使得这个式子成立:

不过,这个猜想至今尚未解决。

这次陶哲轩直接在假设它成立的基础上,证明了交错素数级数收敛性猜想的成立。整个过程大约可以分为四步:

首先,基于Van der Corput差分定理来降低素数计数间隔的长度。

由于证明这个猜想,实际上需要估计区间[1,x]内素数个数的奇偶性分布,因此使用差分定理的目的,能将它转化为仅考虑较短区间内素数个数奇偶性的问题。

转化为这个问题之后,实际上就能用哈代-李特尔伍德素数k元组猜想来证明问题成立。

因此,接下来论文在假设哈代-李特尔伍德素数k元组猜想成立的基础上,估计了短区间内k个素数的概率。

然后,陶哲轩使用几年前与两位数学家William Banks和Kevin Ford共同建立的随机素数模型,来建模素数分布。

最后基于这个模型建立的分布证明猜想。

这篇博客发出后不久,就有网友赶来点赞,表示自己也在从用另一种方法尝试解决这个猜想:

点赞!

我3周前刚在Thomas Bloom的网页上发现了这个猜想,不过只有这篇论文第一句话的内容。

我从计算(computational)的角度尝试搞定它。我把它看作是观察每个结果的偶数和奇数索引之间的差异,然后尝试进行曲线拟合,以确定差异可能为零的位置。

虽然不知道我的数据是否对解决这个问题有帮助,不过至少这提高了我的编程技能。

我还需要一些时间来消化你的论文,感谢!

One More Thing

值得一提的是,2004年陶哲轩和本·格林(Ben Joseph Green)提出的著名格林-陶定理,也是基于埃尔德什·帕尔(Erdős Pál)另一个更著名的等差数列猜想而来。

其中,埃尔德什等差数列猜想如下:

格林-陶定理进一步将猜想范围缩小到他们研究的素数范围内,相当于埃尔德什等差数列猜想的一个“特例”:

埃尔德什为解决这个等差数列猜想悬赏了5000美元。

这些年除了陶哲轩以外,也有不少数学家致力于它的研究,例如Thomas Bloom和Olof Sisask。他们在2020年,证明了整数无穷数列一定包含长度至少为三的等差数列,将这个问题又向前推进了一步。

感兴趣的小伙伴们可以挑战一下了(手动狗头)

新论文地址:

https://arxiv.org/abs/2308.07205

参考链接:

[1]https://arxiv.org/abs/2202.03594

[2]https://mathstodon.xyz/@tao/110891757976027117

— 完 —

量子位 QbitAI · 头条号签约

","gnid":"9c658ff34f4ccdd0e","img_data":[{"flag":2,"img":[{"desc":"","height":"532","title":"","url":"https://p0.ssl.img.360kuai.com/t016176d8e716fcd0ba.jpg","width":"1080"},{"desc":"","height":"172","title":"","url":"https://p0.ssl.img.360kuai.com/t0167faa541758875a1.jpg","width":"1080"},{"desc":"","height":"640","title":"","url":"https://p0.ssl.img.360kuai.com/t011ed56e8e27fcf1c9.jpg","width":"1080"},{"desc":"","height":"495","title":"","url":"https://p0.ssl.img.360kuai.com/t010ea75c56307f5d25.jpg","width":"1080"},{"desc":"","height":"152","title":"","url":"https://p0.ssl.img.360kuai.com/t0131eea6f6547febb9.jpg","width":"844"},{"desc":"","height":"150","title":"","url":"https://p0.ssl.img.360kuai.com/t01df34d76edd2fcf45.jpg","width":"898"},{"desc":"","height":"610","title":"","url":"https://p0.ssl.img.360kuai.com/t01d568603807e33c1b.jpg","width":"1054"},{"desc":"","height":"314","title":"","url":"https://p0.ssl.img.360kuai.com/t01542ea67bc8869fa5.jpg","width":"914"},{"desc":"","height":"305","title":"","url":"https://p0.ssl.img.360kuai.com/t01107b81068a3f877b.jpg","width":"1080"}]}],"original":0,"pat":"art_src_3,fts0,sts0","powerby":"cache","pub_time":1692165120000,"pure":"","rawurl":"http://zm.news.so.com/5d20cdbb465019c500100460c34c40fa","redirect":0,"rptid":"4fc0d1f71c712f4b","rss_ext":[],"s":"t","src":"量子位","tag":[],"title":"陶哲轩新论文:部分证明著名素数猜想,新方法用到了自己的旧模型

丘疮甄4928求级数∑( - 1)^n*(n^2 - n+1)*(1/2)^n的和 -
满国志19698729903 ______ 级数的和=22/27 因有2次方,打不出来,解题过程只能截图,如下图: 扩展资料 求级数和的方法: 1.如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数.正项级数收敛的充要条件是其部分和序...

丘疮甄4928当幂级数为交错级数时怎样求和函数 -
满国志19698729903 ______ 又当x=1时an=1/n(n-1)=1/(n-1)-1/n级数收敛,当x=-1时,an=(-1)^n*(1/(n-1)-1/n)亦收敛(交错级数) 故收敛区间为[-1,1] 2,这个题目应该从第2项到无穷吧?不然无意义. 注意从n=2开始求和,根据公式第2项是-x-ln(1-x),第一项写成(x^(n-1))*x/(n-1)求和后变成-xln(1-x)

丘疮甄4928如何判断∑( - 1)^n/n的收敛性 -
满国志19698729903 ______ ∵|a(n+1)/a(n)|=|n/(n+1)|-->1 (n-->+∞) ρ=1 ∴收敛半径R=1/ ρ=1 收敛区间(-1 ,1) 当x=1时,为调和级数,发散; 当x=-1时,为交错级数,u(n)-->0,|u(n)|单调,根据莱布尼茨定理,级数收敛. ∴级数收敛域:[-1 ,1).

丘疮甄4928判别一个【级数】的收敛性 -
满国志19698729903 ______ 判断级数是否收敛,首先判断通项是否收敛,但这是必要条件,也就是说通项不收敛,级数一定不收敛,通项收敛但级数不一定收敛.所以先判断通项是否收敛.判断通项是否收敛,一眼就可以看出通项是收敛的,那么只好求级数是否收敛了.可以将通项拆为如下形式,然后逐项相加.原式=(an+b)/(n+1)²-(cn+d)/(n²+2)²,与原式比较可以求得a、b、c、d,然后从n=1开始逐项相加求级数,发现分式项会前后抵消,但系数项认为n表达式,说明级数是发散.过程不好写,这里就不写了,自己写写看.

丘疮甄4928怎么判断级数1/(3n)是收敛的? -
满国志19698729903 ______ 判断一个级数的收敛性 第一步,如果可以直接求出其前n项和得表达式sn,就求出sn,然后求其在n趋于无穷时的极限,若极限时一个常数则级数收敛,不是的话就是发散 第二步,如果求不出sn,且其一般项an>0,则应用正项级数的比较判别法,比值判别法,根号判别法来进行判断 第三步,如果是一个任意项级数,则当其绝对收敛时必条件收敛,为交错级数时,当其一般项an满足an≥an+1,且lim an=0(n趋于∞)时,交错级数收敛 对任何级数,当其一般项an在n趋于无穷时不趋于0的情况下,必发散

丘疮甄4928交错级数( - 1)^n*(n+1)/(3n - 2)是否收敛,如何证明 -
满国志19698729903 ______[答案] 不收敛. 通项(-1)^n * (n+1)/(3n-2)的绝对值(n+1)/(3n-2) ->1/3,所以通项不趋向于0,级数不收敛. 注:对于交错级数(-1)^n * an,数列an递减,那么其收敛的的充要条件是an->0,这个条件一定要注意验证

丘疮甄4928如果一个正项级数∑An收敛则交错级数∑( - 1)^nAn收敛性如何?请证明 -
满国志19698729903 ______[答案] 它是绝对收敛的,从而也是收敛的

丘疮甄4928交错级数审敛法如何判断交错级数{( - 1)^n}/{n+( - 1)^n}^1/2的敛散性莱布尼茨定理不管用吧?是不是与1/(2n)^1/2 做比较?是条件收敛的吧? -
满国志19698729903 ______[答案] 有个法则: 形如:一般项为(-1)^n *Un; 则只要满足条件: 1.U(n)>=U(n+1) 2.当n趋近于无穷大时,Un趋近于0 满足这两个条件就收敛 (PS:我算了一下是“发散”的)

丘疮甄4928怎么判断级数是条件收敛还是绝对收敛?方法和步骤是什么? -
满国志19698729903 ______[答案] 1:先判断是否收敛. 2:如果收敛,且为交错级数,则绝对收敛. 其实就是交错级数如果加绝对值收敛则为条件收敛,如果交错级数不加绝对值也收敛,则为绝对收敛.

(编辑:自媒体)
关于我们 | 客户服务 | 服务条款 | 联系我们 | 免责声明 | 网站地图 @ 白云都 2024